
Multithreading in

Java

 Single-threaded systems use an approach called an

event loop with polling.

 Multithreading in java is a process of executing

multiple threads simultaneously.

 Thread is basically a lightweight sub-process, a smallest

unit of processing.

Advantages of Java Multithreading

1) It doesn't block the user because threads are

independent and you can perform multiple operations at

same time.

2) You can perform many operations together so it saves

time.

3) Threads are independent so it doesn't affect other

threads if exception occur in a single thread.

What is Thread in java

 A thread is a lightweight sub process, a smallest unit of

processing. It is a separate path of execution.

 Threads are independent, if there occurs exception in

one thread, it doesn't affect other threads. It shares a

common memory area.

Messaging

 When programming with some other languages, you

must depend on the operating system to establish

communication between threads

 By contrast, Java provides a clean, low-cost way for two

or more threads to talk to each other, via calls to

predefined methods that all objects have. Java’s

messaging system allows a thread to enter a

synchronized method on an object, and then wait there

until some other thread explicitly notifies it to come

out.

Life cycle of a Thread

The life cycle of the thread in java is controlled by JVM. The

java thread states are as follows:

 New

 Runnable

 Running

 Non-Runnable (Blocked)

 Terminated

1) New

 The thread is in new state if you create an instance of
Thread class but before the invocation of start()
method.

2) Runnable

 The thread is in runnable state after invocation of
start() method, but the thread scheduler has not
selected it to be the running thread.

3) Running

 The thread is in running state if the thread scheduler
has selected it.

4) Non-Runnable (Blocked)

 This is the state when the thread is still alive, but is
currently not eligible to run.

5) Terminated

 A thread is in terminated or dead state when its run()
method exits.

How to create thread

By extending Thread class

By implementing Runnable interface.

Thread class:

 Thread class provide constructors and methods to create
and perform operations on a thread. Thread class extends
Object class and implements Runnable interface.

Commonly used Constructors of Thread class:

1. Thread()

2. Thread(String name)

3. Thread(Runnable r)

4. Thread(Runnable r,String name)

class A extends Thread

{

public void run()

{for (int i=0;i<=5;i++)

System.out.println("In thread A"+i);

System.out.println("Exiting thread A");

}

}

class B extends Thread {

public void run()

{for (int j=0;j<=5;j++)

System.out.println("In thread B"+j);

System.out.println("Exiting thread B");

}

}

class ThreadDemo

{

public static void main (String args[])

{

A oba = new A();

oba.start();

B obb=new B();

obb.start();

}

}

Common methods of thread

class

 public void run(): is used to perform action for a thread.

 public void start(): starts the execution of the thread.JVM
calls the run() method on the thread.

 public void sleep(long miliseconds): Causes the currently
executing thread to sleep (temporarily cease execution) for
the specified number of milliseconds.

 public void join(): waits for a thread to die.

 public void join(long miliseconds): waits for a thread to die
for the specified miliseconds.

 public int getPriority(): returns the priority of the thread.

 public int setPriority(int priority): changes the priority of
the thread.

 public String getName(): returns the name of the thread.

 public void setName(String name): changes the name of the
thread.

Runnable interface:

The Runnable interface should be

implemented by any class whose instances

are intended to be executed by a thread.

Runnable interface have only one method

named run().

 public void run(): is used to perform

action for a thread

Using Runnable interface

class Multi3 implements Runnable{

public void run(){

System.out.println("thread is running...");

}

public static void main(String args[]){

Multi3 m1=new Multi3();

Thread t1 =new Thread(m1);

t1.start();

}

}

Main Thread

class CurrentThreadDemo {

public static void main(String args[]) {

Thread t = Thread.currentThread();

System.out.println("Current thread: " + t);

// change the name of the thread

t.setName("My Thread");

System.out.println("After name change: " +

t);

try { for(int n = 5; n > 0; n--) {

System.out.println(n);

Thread.sleep(1000); }

} catch (InterruptedException e) {

System.out.println("Main thread

interrupted"); }

}}

 Current thread: Thread[main,5,main]

 After name change: Thread[My

Thread,5,main]

 5

 4

 3

 2

 1

isAlive() and join()

isAlive()
 The isAlive() method returns true if the thread upon which it is

called is still running. It returns false otherwise

final boolean isAlive()

join()
 This method waits until the thread on which it is called

terminates. Its name comes from the concept of the calling thread
waiting until the specified thread joins it.

 Additional forms of join() allow you to specify a maximum
amount of time that you want to wait for the specified thread to
terminate.

final void join() throws InterruptedException

Thread Priorities

 Thread priorities are used by the thread scheduler to decide when each

thread should be allowed to run.

In practice, the amount of CPU time that a thread gets often depends on

several factors besides its priority. (For example, how an operating system

implements multitasking can affect the relative availability of CPU time.) A

higher-priority thread can also preempt a lower-priority one. For instance,

when a lower-priority thread is running and a higher-priority thread resumes

(from sleeping or waiting on I/O, for example), it will preempt the lower-

priority thread.

setPriority()

To set a thread’s priority, use the setPriority() method,

which is a member of Thread.

This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling

thread. The value of level must be within the range

MIN_PRIORITY and MAX_PRIORITY. Currently, these values

are 1 and 10, respectively. To return a thread to default

priority, specify NORM_PRIORITY, which is currently 5.

These priorities are defined as static final variables within

Thread.

getPriority()

 You can obtain the current priority setting by calling the

getPriority() method of Thread :

 final int getPriority()

THANKSSSS!!!!!!!!!!!!

